21.10.2023

Схема мощного регулятора сетевого напряжения на mosfet. Три простые схемы регулятора тока для зарядных устройств


ФАЗОВЫЙ РЕГУЛЯТОР МОЩНОСТИ НА КЛЮЧЕВОМ ПОЛЕВОМ ТРАНЗИСТОРЕ ничительного резистора, что снижает быстродействие ключа, так как образуется RC-цепь состоящая из этого сопротивления и емкости затвора, либо выход схемы управления делают более мощным.

Обычно фазовые регуляторы мощности переменного тока строятся на основе тиристора или симистора. Эти схемы уже давно стали типовыми и повторены многократно как радиолюбителями, так и в масштабе производства. Но тиристорным и симисторным регуляторам, равно как и ключам, всегда был свойственен один важный недостаток, ограничение минимальной мощности нагрузки. То есть, типовой тиристорный регулятор на максимальную мощность нагрузки более 100W не может хорошо регулировать мощность маломощной нагрузки, потребляющей единицы и доли ватт. Ключевые полевые транзисторы отличаются тем, что физически работа их канала очень напоминает работу обычного механического выключателя, в полностью открытом состоянии их сопротивление очень мало и составляет доли Ом, а в закрытом состоянии ток утечки составляет микроамперы. И это практически не зависит от величины напряжения на канале. То есть, именно как механический выключатель. Именно поэтому ключевой каскад на ключевом полевом транзисторе может коммутировать нагрузку мощностью от единиц и долей ватт, до максимально допустимого по току значения. Например, популярный полевой транзистор IRF840 без радиатора работая в ключевом режиме может коммутировать мощность практически от нуля до 400W. Кроме того ключевой полевой транзистор обладает очень низким током затвора, поэтому для управления требуется очень низкая статическая мощность.

Правда это омрачается относительно большой емкостью затвора, поэтому в первый момент включения ток затвора может оказаться и довольно большим (ток на заряд емкости затвора). С этим борются включением последовательно затвору токоограСхема регулятора мощности показана на рисунке. Нагрузка питается пульсирующим напряжением, так как подключена через диодный мост VD5-VD8. Для питания электронагревательного прибора (паяльника, лампы накаливания) это подходит. Так как у пульсирующего тока отрицательная полуволна «вывернута» вверх, получаются пульсации с частотой 100 Гц Но они положительные, то есть, график изменения от нуля до полодительного амплитудного значения напряжения. Поэтому регулировка возможна от 0% до 100% Величина максимальной мощности нагрузки в этой схеме ограничена не столько максимальным током открытого канала VT1 (это ЗОА), сколько максимальным прямым током диодов выпрямительного моста VD5-VD8.

При использовании диодов КД209 схема может работать с нагрузкой мощностью до 100W. Если нужно работать с более мощной нагрузкой (до 400W) нужно использовать более мощные диоды, например, КД226Г, Д.

На инверторах микросхемы D1 выполнен формирователь управляющих импульсов, которые открывают транзистор VT1 в определенной фазе полуволны. Элементы D1.1 и D1.2 образуют триггер Шмитта, а остальные элементы D1.3-D1.6 образуют умощненный выходной инвертор. Умощнить выход пришлось чтобы компенсировать неприятности вызванные скачком тока на заряд емкости затвора VT1 в момент его включения.

Система низковольтного питания микросхемы посредством диода VD2 разделена на две части, собственно питающую часть,

Фазоимпульсными регуляторами (ФИР) называются устройства, позволяющие регулировать яркость ламп (диммеры), мощность электрических нагревателей, скорость вращения электроинструмента и т.п. ФИР содержит в своём составе электронный ключ, который включен между питающей сетью и нагрузкой. В течении некоторой части периода сетевого напряжения этот ключ замкнут, а затем он размыкается. Увеличивая или уменьшая время, в течении которого ключ находится в замкнутом состоянии, можно увеличивать или уменьшать мощность, выделяющуюся в нагрузке. Обычно в качестве ключа используется тиристор. Рассмотрим структурную схему тиристорного ФИР, представленную на рис. 1. Соответствующие временные диаграммы представлены на рис. 2.

Селектор нуля срабатывает, когда сетевое напряжение проходит через ноль. Цепь задержки через интервал времени Тз, регулируемый в пределах от нуля до 10 мс, запускает формирователь импульсов, открывающих тиристор. Далее тиристор остаётся открытым до тех пор, пока ток через него не станет меньше тока удержания, т.е. почти до конца полупериода.

На временной диаграмме Uc - выпрямленное сетевое напряжение. Uн - напряжение на нагрузке. Зелёным цветом выделены моменты времени, когда тиристорный ключ замкнут.

При малых и средних Тз тиристорный ФИР работает вполне удовлетворительно, но при больших Тз, близких к длительности полупериода сетевого напряжения, что соответствует питанию нагрузки короткими импульсами малой амплитуды, возникают проблемы, связанные с тем, что не все виды нагрузки могут нормально работать при таком питании. Например лампы накаливания начинают заметно мерцать. Кроме того при больших Тз нестабильность работы цепи регулируемой задержки вызывает существенные изменения длительности выходных импульсов. В самом деле - если Тз, например в результате нагрева элементов схемы, возрастёт с 9 до 9.5 мс, т.е. примерно на 5%, то длительность импульсов на нагрузке сократится от 1 мс до 0.5 мс, т.е. вдвое. Если Тз превысит 10 мс, то тиристор будет открываться в самом начале полупериода, что соответствует максимальной мощности. Это может привести к повреждению нагрузки, если она не рассчитана на полное сетевое напряжение.

Ещё одним недостатком тиристорных ФИР являются помехи, которые возникают при замыкании ключа и, в меньшей степени, при размыкании (имеется в виду работа ФИР на активную нагрузку).

Реальные тиристорные ФИР обычно делаются на симметричном тиристоре (симисторе), по этому выпрямитель не требуется, но рассмотренные недостатки им также присущи.

Если в качестве ключа использовать не тиристор, а мощный высоковольтный MOSFET транзистор, то можно существенно уменьшить проблемы, возникающие при необходимости питать нагрузку низким напряжением.

Структурная схема ФИР с ключом на полевом транзисторе представлена на рис. 3. Временные диаграммы представлены на рис. 4.

Компаратор сравнивает регулируемое напряжение Uоп, формируемое источником опорного напряжения, с выпрямленным сетевым напряжением. Если сетевое напряжение меньше опорного, то полевой транзистор открыт, нагрузка подключена к сети. В противном случае компаратор размыкает ключ - ток через нагрузку отсутствует. Очевидно, что как на восходящей так и на нисходящей ветвях синусоиды будут участки, когда транзисторный ключ замкнут, что и отражено на временной диаграмме. Это позволяет передать в нагрузку требуемую мощность за большее время, чем в случае тиристорного ФИР, и, соответственно, уменьшить пиковые напряжения и токи нагрузки.

Схема электрическая принципиальная транзисторного ФИР представлена на рис. 5.

Источник регулируемого опорного напряжения собран на элементах R1, C1, VD2 и R4. Напряжение +12В со стабилитрона VD2 также используется для питания микросхемы DA1.1. Конденсатор С2 уменьшает шумы, возникающие при вращении оси переменного резистора R4. Операционный усилитель DA1.1, используемый в качестве компаратора, сравнивает опорное напряжение с сетевым, поступающим на инверсный вход с делителя на резисторах R2, R3. Полевой транзистор VT1 представляет собой силовой ключ, управляемый сигналом с выхода компаратора. Резистор R8 разгружает выход усилителя DA1.1 от ёмкости затвор-исток полевого транзистора, кроме того благодаря этому резистору переключение VT1 несколько замедляется, что способствует снижению помех.

Первый вариант транзисторного ФИР содержал только эти элементы. Он был собран на макетной плате и оказался вполне работоспособен, но форма напряжения на нагрузке существенно отличалась от желаемой. Соответствующая осциллограмма приведена на рис. 6.

Левый пик на осциллограмме, соответствующий нисходящей ветви синусоиды, существенно ниже правого пика, соответствующего восходящей ветви. Так получается из-за задержки, вносимой компаратором и ключом. Применение более быстрого операционного усилителя и уменьшение резистора R8 позволяет улучшить ситуацию, но до конца проблему не устраняет, кроме того автору очень хотелось остаться в рамках недорогих и доступных комплектующих.

Устранить указанный недостаток позволяет введение в схему второго компаратора DA1.2. Благодаря цепи задержки на элементах VD3, R9, R10 и С3 DA1.2 срабатывает вслед за DA1.1 с задержкой около 100 микросекунд. Этой задержки вполне достаточно, чтобы к моменту срабатывания DA1.2 переходные процессы, связанные с переключением DA1.1 успевали закончиться. Напряжение с выхода DA1.2 через резистор R7 суммируется с сигналом, снимаемым с делителя R2,R3. Благодаря этому как на нисходящей, так и на восходящей ветвях синусоиды компаратор DA1.1 срабатывает чуть раньше - задержка компенсируется, длительности и амплитуды обеих пиков выравниваются. Осциллограмма для этого случая представлена на рис. 7.

Если ФИР настроен так, что срабатывание DA1.1 происходит вблизи вершины синусоиды (большая мощность на нагрузке), то вышеописанная задержка не сказывается на работе устройства. Это связано с тем, что вблизи вершины синусоиды скорость изменения сетевого напряжения замедляется и за время задержки значимого изменения напряжения не происходит. С другой стороны выяснилось, что эта же причина - медленное изменение сетевого напряжения вблизи вершины синусоиды - приводит к возникновению автоколебаний в цепочке из двух компараторов DA1.1 и DA1.2, охваченных обратной связью. Устранить автоколебания позволяет цепочка VD3, R9. Благодаря ей конденсатор С3 заряжается существенно быстрее, чем разряжается. Если импульсы на выходе DA1.1 достаточно широкие, что соответствует большой амплитуде импульсов на нагрузке ФИР, то C3 не успевает разряжаться - на нём появляется постоянное напряжение, превышающее напряжение на инверсном входе DA1.2. Компаратор DA1.2 перестаёт переключаться и автоколебания не возникают. Номиналы резисторов R5, R6, R9 и R10 подобраны так, что блокировка DA1.2 наступает при амплитуде импульсов на нагрузке ФИР около 150 В.

Монтаж устройства был выполнен на макетной плате, фотография которой не приводится, т.к. кроме описанного ФИР на ней было собрано ещё одно устройство, не имеющее отношения к данной разработке. Нагрузкой ФИР служит нагреватель мощностью около 100 ВА с рабочим напряжением 70В. Полевой транзистор размещён на радиаторе в виде пластины площадью 10 квадратных сантиметров. В процессе работы он почти не нагревается - видимо радиатор можно уменьшить или вовсе отказаться от него.

При отладке и последующей эксплуатации устройства следует соблюдать осторожность т.к. его элементы имеют контакт с электрической сетью.

Наладка устройства сводится к подбору резистора R7. ФИР следует подключить к сети 220В (через разделительный трансформатор!). В качестве нагрузки можно использовать лампу накаливания на 220В мощностью около 100 ВА, паяльник и т.п. Параллельно нагрузке следует включить вход осциллографа. С помощью резистора R4 нужно выставить амплитуду импульсов на нагрузке около 50 В. Резистор R7 следует подобрать таким образом, чтобы амплитуда импульсов на восходящей и нисходящей ветвях синусоиды были равны. При отклонении выходного напряжения от 50В равенство амплитуд импульсов не должно существенно нарушаться. У автора при выходном напряжении 20В амплитуды импульсов отличались на 2В, при 30В - на 1В, при 100В - на 1В.

В заключении укажем на особенности данного ФИР, определяющие возможную область применения. Его рекомендуется использовать для питания низковольтных устройств, которые по той или иной причине необходимо запитать от сети 220В. Стабилизация амплитуды импульсов на выходе транзисторного ФИР очень этому способствует.

Автор успешно использовал в качестве нагрузки паяльник мощностью 30ВА, рассчитанный на напряжение 27В, а также лампочку 6В 0.6ВА. Лампочка горела без мерцания, её яркость плавно регулировалась от нуля до видимого перекала. Средневолновый радиоприёмник, находящийся рядом с данным устройством, не реагировал на его включение. Из этого можно сделать вывод о небольшом уровне высокочастотных помех.

При питании от ФИР лампы накаливания на напряжение 220В выяснилось, что при небольших уровнях диммирования (почти максимальная яркость) имеют место самопроизвольные и весьма заметные изменения яркости. Анализ этого явления показал, что причиной является существенное отличие формы сетевого напряжения от синусоиды. Если порог срабатывания компаратора попадает на достаточно протяжённую плоскую вершину, которая имеется у реального сетевого напряжения, то даже небольшие изменения величины напряжения в сети будут вызывать значительные колебания длительности импульсов, вырабатываемых компаратором. Это и вызывает изменение яркости лампы.

При разработке и испытаниях данного устройства предполагалось, что нагрузка может быть только активной (резистор, нагреватель, лампа накаливания). Возможность использования транзисторного ФИР с реактивной нагрузкой, а также для зарядки каких-либо аккумуляторов, регулирования оборотов электродвигателей и т.п. не рассматривалась и не проверялась.

Обычно фазовые регуляторы мощности переменного тока строятся на основе тиристора или симистора. Эти схемы уже давно стали типовыми и повторены многократно как радиолюбителями, так и в масштабе производства. Но тиристорным и симисторным регуляторам, равно как и ключам, всегда был свойственен один важный недостаток - ограничение минимальной мощности нагрузки. То есть, типовой тиристорный регулятор на максимальную мощность нагрузки более 100 ватт не может хорошо регулировать мощность маломощной нагрузки, потребляющей единицы и доли ватт.

Ключевые полевые транзисторы отличаются тем, что физически работа их канала очень напоминает работу обычного механического выключателя - в полностью открытом состоянии их сопротивление очень мало и составляет доли Ом а в закрытом состоянии ток утечки составляет микроамперы и это практически не зависит от величины напряжения на канапе.

Именно поэтому ключевой каскад на ключевом полевом транзисторе может коммутировать нагрузку мощностью от единиц и долей ватт, до максимально допустимого по току значения. Например, популярный полевой транзистор IRFS40 без радиатора работая в ключевом режиме может коммутировать мощность практически от нуля до 400 ватт.

Кроме того ключевой полевой транзистор обладает очень низким током затвора, поэтому для управления требуется очень низкая статическая мощность. Правда это омрачается относительно большой емкостью затвора, поэтому в первый момент включения ток затвора может оказаться и довольно большим (ток на заряд емкости затвора). С этим борются включением последовательно затвору токоограничительного резистора, что снижает быстродействие ключа, так как образуется RC-цель состоящая из этого сопротивления и емкости затвора, либо выход схемы управления делают более мощным.

Схема регулятора мощности показана на рисунке.

Нагрузка питается пульсирующим напряжением, так как подключена через диодный мост VD5-VD8. Для питания электронагревательного прибора (паяльника, лампы накаливания) это подходит.

Так как у пульсирующего тока отрицательная полуволна "вывернута" вверх, получаются пульсации с частотой 100 Гц. Но они положительные, то есть, график изменения от нуля до положительного амплитудного значения напряжения. Поэтому регулировка возможна от 0% до 100%.

Величина максимальной мощности нагрузки в этой схеме ограничена не столько максимальным током открытого канала VT1 (это 30 А). сколько максимальным прямым током диодов выпрямительного моста VD5-VD8. При использовании диодов КД209 схема может работать с нагрузкой мощностью до 100 Вт. Если нужно работать с более мощной нагрузкой (до 400 Вт) нужно использовать более мощные диоды, например, КД226Г, Д.

На инверторах микросхемы D1 выполнен формирователь управляющих импульсов, которые открывают транзистор VT1 в определенной фазе полуволны. Элементы D1.1 и D1.2 образуют триггер Шмита, а остальные элементы D1.3-D1.6 образуют умощненный выходной инвертор.

Умощнить выход пришлось чтобы компенсировать неприятности вызванные скачком тока на заряд емкости затвора VT1 в момент его включения.

Система низковольтного питания микросхемы посредством диода VD2 разделена на две части, - собственно питающую часть, создающую постоянное напряжение между выводами 7 и 14 микросхемы, и часть представляющую собой датчик фазы сетевого напряжения. Работает это следующим образом.

Сетевое напряжение выпрямляется мостом VD5-VD8, затем поступает на параметрический стабилизатор на резисторе R6 и стабилитроне VD9. Так как в данной цепи нет сглаживающего конденсатора напряжение на стабилитроне носит пульсирующий характер.

Цепь R1-R2-C1 совместно с диодом VD1 устанавливает фазу пульсирующего напряжения при которой напряжение на конденсаторе С1 достигает порога переключения триггера Шмитта. Изменяя сопротивление данной RC-цепи мы изменяем время задержки открытия ключевого транзистора от момента того, когда напряжение в сети достигает значения 8-10V (значения напряжения порога переключения триггера Шмитта). Поскольку частота сети достаточно стабильна, то момент открытия ключевого транзистора относительно фазы сетевого напряжения поддерживается достаючно стабильным относительно установленного резистором R1.

Диод VD1 вместе с резистором R5 образует цепь ускоренной разрядки конденсатора С1, необходимую для того чтобы этот конденсатора разряжался при приходе фазы сетевого напряжения к нулю.

При этом триггер Шмитта переключается в нулевое состояние и ключевой транзистор закрывается. Таким образом, регулируя сопротивление R1 мы изменяем фазу момента открывания ключевого транзистора, и напряжение на нагрузку поступает только в период от этой точки до амплитудного значения. Таким образом происходит фазовая регулировка мощности. В общем, принцип почти такой же как в тиристорном регуляторе.

Теперь о источнике питания микросхемы. Практически микросхема питается напряжением запасенным в конденсаторе С2. На каждой полуволне этот конденсатор заряжается через диод VD2. Затем, при переходе фазы к нулю этот диод закрывается и питание микросхемы поддерживается зарядом конденсатора С2. Поэтому напряжение питания микросхемы постоянное, стабильное и не подверженное пульсациям. Все детали кроме резистора R1 на печатной плате с односторонней металлизацией.

Так как авторский вариант рассчитан на работу с нагрузкой мощностью не более 100W никаких радиаторов не предусмотрено и в мостовом выпрямителе используются диоды КД209 Впрочем, полевому транзистору радиатор не понадобится и при номинальной мощности нагрузки до 400 ватт. А вот диоды придется подобрать более мощные.

Микросхему К561ЛН2 можно заменить на К1561ЛН2. Стабилитрон. Д814Г можно заменить другим стабилитроном на напряжение около 10V.

В процессе налаживания может потребоваться подбор сопротивлений резистора R2 (чтобы обеспечить необходимую ширину диапазона регулировки) и резистора R5 (чтобы обеспечивалась разрядка С1). Сопротивление R5 нужно выбрать как можно большим, но таким чтобы при минимальной мощности установленной R1 транзистор не открывался вообще.

При работе с множеством различных технологий часто стоит вопрос: как управлять мощностью, которая доступна? Что делать, если её необходимо понизить или повысить? Ответом на эти вопросы служит ШИМ-регулятор. Что он собой представляет? Где применяется? И как самому собрать такой прибор?

Что такое широтно-импульсная модуляция?

Без выяснения значения этого термина продолжать не имеет смысла. Итак, широтно-импульсная модуляция — это процесс управления мощностью, которая подводится к нагрузке, осуществляемая путём видоизменения скважности импульсов, которая делается при постоянной частоте. Существует несколько типов широтно-импульсной модуляции:

1. Аналоговый.

2. Цифровой.

3. Двоичный (двухуровневый).

4. Троичный (трехуровневый).

Что такое ШИМ-регулятор?

Теперь, когда мы знаем, что такое широтно-импульсная модуляция, можно поговорить и о главной теме статьи. Используется ШИМ-регулятор для того, чтобы регулировать напряжение питания и для недопущения мощных инерционных нагрузок в авто- и мототехнике. Это может звучать слишком сложно и лучше всего пояснить на примере. Допустим, необходимо сделать, чтобы лампы освещения салона меняли свою яркость не сразу, а постепенно. Это же относится к габаритным огням, автомобильным фарам или вентиляторам. Воплотить такое желание можно путём установки транзисторного регулятора напряжения (параметрический или компенсационный). Но при большом токе на нём будет выделяться чрезвычайно большая мощность и потребуется установка дополнительных больших радиаторов или дополнение в виде системы принудительного охлаждения с использованием маленького вентилятора, снятого с компьютерного устройства. Как видите, данный путь влечёт за собой много последствий, которые необходимо будет преодолеть.

Настоящим спасением из данной ситуации стал ШИМ-регулятор, который работает на мощных полевых силовых транзисторах. Они могут коммутировать большие токи (которые достигают 160 Ампер) при напряжении всего в 12-15В на затворе. Следует отметить, что сопротивление у открытого транзистора довольное мало, и благодаря этому можно заметно снизить уровень рассеиваемой мощности. Чтобы создать свой собственный ШИМ-регулятор, понадобится схема управления, которая сможет обеспечить разность напряжения между истоком и затвором в границах 12-15В. Если этого не получится достичь, то сопротивление канала будет сильно увеличиваться и значительно возрастёт рассеиваемая мощность. А это, в свою очередь, может привести к тому, что транзистор перегреется и выйдет из строя.

Выпускается целый ряд микросхем для ШИМ-регуляторов, которые смогут выдержать повышение входного напряжения до уровня 25-30В, при том, что питание будет всего 7-14В. Это позволит включать выходной транзистор в схеме вместе с общим стоком. Это, в свою очередь, необходимо для подключения нагрузки с общим минусом. В качестве примеров можно привести такие образцы: L9610, L9611, U6080B ... U6084B. Большинство нагрузок не потребляет ток больше 10 ампер, поэтому они не могут вызвать просадку напряжения. И как результат - использовать можно и простые схемы без доработки в виде дополнительного узла, который будет повышать напряжение. И именно такие образцы ШИМ-регуляторов и будут рассмотрены в статье. Они могут быть построены на основе несимметрического или ждущего мультивибратора. Стоит поговорить про ШИМ-регулятор оборотов двигателя. Об этом далее.

Схема №1

Эта схема ШИМ-регулятора собиралась на инверторах КМОП-микросхемы. Она является генератором прямоугольных импульсов, который действует на 2-х логических элементах. Благодаря диодам здесь отдельно изменяется постоянная времени разряда и заряда частотозадающего конденсатора. Это позволяет менять скважность, которую имеют выходные импульсы, и как результат - значение эффективного напряжения, которое есть на нагрузке. В данной схеме возможно использование любых инвертирующих КМОП-элементов, а также ИЛИ-НЕ и И. В качестве примеров подойдут К176ПУ2, К561ЛН1, К561ЛА7, К561ЛЕ5. Можно использовать и другие виды, но перед этим придётся хорошо подумать о том, как правильно сгруппировать их входы, чтобы они могли выполнять возложенный функционал. Преимущества схемы - доступность и простота элементов. Недостатки - сложность (практически невозможность) доработки и несовершенство относительно изменения диапазона выходного напряжения.

Схема №2

Обладает лучшими характеристиками, нежели первый образец, но сложнее в выполнении. Может регулировать эффективное напряжение на нагрузке в диапазоне 0-12В, до которого изменяется с начального значения 8-12В. Максимальный ток зависит от типа полевого транзистора и может достигать значительных значений. Учитывая, что выходное напряжение является пропорциональным входному управляющему, данную схему можно использовать как часть системы регулирования (для поддержки уровня температуры).

Причины распространения

Чем привлекает автолюбителей ШИМ-регулятор? Следует отметить стремление к увеличению КПД, когда проводится построение вторичных для электронной аппаратуры. Благодаря данному свойству можно данную технологию найти также при изготовлении компьютерных мониторов, дисплеев в телефонах, ноутбуках, планшетах и подобной техники, а не только в автомобилях. Также следует отметить значительную дешевизну, которой отличается данная технология при своём использовании. Также, если решите не покупать, а собирать ШИМ-регулятор собственноручно, то можно сэкономить деньги при усовершенствовании своего собственного автомобиля.

Заключение

Что ж, вы теперь знаете, что собой представляет ШИМ-регулятор мощности, как он работает, и даже можете сами собрать подобные устройства. Поэтому, если есть желание поэкспериментировать с возможностями своего автомобиля, можно сказать по этому поводу только одно - делайте. Причем можете не просто воспользоваться представленными здесь схемами, но и существенно доработать их при наличии соответствующих знаний и опыта. Но даже если всё не получится с первого раза, то вы сможете получить очень ценную вещь - опыт. Кто знает, где он может в следующий раз пригодиться и насколько важным будет его наличие.

Представленный регулятор предназначен для регулирования температуры жала паяльника на номинальное напряжение от 100 до 220 В, но может работать и с другими нагрузками. В качестве регулирующего элемента использован мощный переключательный полевой транзистор IRF840.

Данный транзистор имеет высокое рабочее напряжение сток-исток до 500 В и ток стока до 8 А при температуре корпуса 25 °С (5 А при 100 °С). Импульсный же ток может достигать 32 А, а допустимое напряжение затвор-исток ±20 В, рассеиваемая мощность составляет 125 Вт, сопротивление открытого канала 0,85 Ом, а ток закрытого канала всего 25 мкА. Для управления транзистора, требуется очень малая статическая мощность, благодаря чему регулятор получается весьма экономичным.

Нагрузка подключена последовательно с регулирующим элементом. Поскольку транзистор содержит встроенный защитный диод, включенный параллельно каналу (катодом к стоку), регулирование мощности потребляемой нагрузкой, возможно изменять от 50 до 100% от номинальной, чего вполне достаточно для паяльника.

На логических элементах DD1.1-DD1.4, резисторах R1-R4, конденсаторе C1 и диоде VD2 собран формирователь управляющих транзистором импульсов. При этом элементы DD1.1, DD1.2 и резистор R4 включены по схеме триггера Шмитта, а включенные параллельно элементы DD1.3, DD1.4 представляют собой буфер-инвертор. Питается формирователь от параметрического стабилизатора напряжения R5VD1.

Диод VD3 — развязывающий, он не дает возможности разряжаться конденсатору C2 в минусовые полупериоды сетевого напряжения, тем самым поддерживая стабильным напряжение питания микросхемы. Диоды VD4, VD5 защищают выход логических элементов буфера от импульсных сетевых наводок со стороны полевого транзистора VT1.

При положительной полуволне сетевого напряжения (плюс — на правом по схеме выводе резистора R5) на стабилитроне VD1 будет около 10В и конденсатор С2 через диод VD3 зарядится примерно до 9 В. Это напряжение используется для питания микросхемы DD1. Одновременно через резисторы R1,R2 сравнительно медленно заряжается конденсатор С1. Когда напряжение на нем достигнет уровня 30…40% от напряжения питания микросхемы, триггер Шмитта переключится, на выходе элемента DD1.1 высокий уровень сменится низким, на выходе буфера появится высокий уровень (около 9 В), поэтому полевой транзистор VT1 откроется и с этого момента напряжение поступит на нагрузку.

Отрицательная полуволна сетевого напряжения через защитный диод полевого транзистора беспрепятственно проходит к нагрузке, хотя транзистор и закрыт. Поскольку стабилитрон оказывается включенным в прямом направлении, на нем будет напряжение около 0,7 В и конденсатор С1 быстро разрядится через диод VD2. На входе триггера Шмитта появляется низкий уровень, триггер переключается в прежнее состояние, низкий уровень на выходе буфера закрывает транзистор.

Чем больше сопротивление резистора R1, тем медленнее заряжается конденсатор C1 и тем позднее от момента появления положительной полуволны открывается транзистор. Таким образом, изменяя сопротивление резистора R1, можно регулировать эффективное напряжение на нагрузке.

Кроме указанной на схеме, можно применить микросхемы К561ЛА7, . Стабилитрон Д814В можно заменить на Д814Г, КС510А; диоды КД522Б на КД102Б, КД103А, КД503А, КД510А, КД521А. Переменный резистор — СПО-0,15, СП4-1а.

Не забывайте, что детали устройства находятся под сетевым напряжением! Это требует продуманности конструкции и осторожности при эксплуатации.

При налаживании регулятора может потребоваться подборка переменного резистора R1 или конденсатора C1 с тем, чтобы регулирование мощности было плавным, без «мертвых зон». На это время удобно в качестве нагрузки использовать маломощную лампу накаливания.

Регулятор может работать и при меньшем питающем напряжении вплоть до 30 В. В этом случае надо подобрать резистор R5 таким, чтобы напряжение питания микросхемы было стабильным. Если оно будет меньше напряжения стабилизации стабилитрона, то постепенно, шагами не более 10%, уменьшают сопротивление резистора R5 до тех пор, пока напряжение не восстановится до нормального уровня.

Если ток нагрузки регулятора будет превышать 2 Ампера, транзистор придется снять с платы и установить на теплоотвод. Необходимо отметить, что описанный регулятор нагружает сеть несимметрично, т. е. для плюсовой и минусовой полуволн сетевого напряжения потребляемая мощность различна. Эксплуатировать такую сетевую нагрузку, если ее мощность превышает 50 Вт, запрещено государственными нормативами.

Чтобы обеспечить симметричность нагрузки регулятора, достаточно включать его в сеть через мостовой выпрямитель, собранный из диодов соответствующей мощности (плюсовой вывод моста должен быть подключен к правому по схеме выводу резистора R5). При этом через нагрузку будет протекать пульсирующий однополярный ток, но для нагревательных приборов и ламп накаливания это значения не имеет.

Кроме этого, потребуется обеспечить разрядку конденсатора C1 в конце каждого полупериода. Для этого нужно стабилитрон VD1 шунтировать резистором сопротивлением 10 кОм (уточнить при налаживании). Оно должно быть как можно большим, но таким, чтобы в положении движка резистора R1, соответствующем минимальной мощности в нагрузке, транзистор не открывался.


© 2024
zko-pricep.ru - Полезные новости для автомобилистов