14.04.2024

Основные формулы электростатики. Электростатика



Электрическая проводимость
Электрическое сопротивление
Электрический импеданс См. также: Портал:Физика

Электростатика - раздел учения об электричестве , изучающий взаимодействие неподвижных электрических зарядов .

Между одноимённо заряженными телами возникает электростатическое (или кулоновское) отталкивание, а между разноимённо заряженными - электростатическое притяжение. Явление отталкивания одноименных зарядов лежит в основе создания электроскопа - прибора для обнаружения электрических зарядов.

В основе электростатики лежит закон Кулона . Этот закон описывает взаимодействие точечных электрических зарядов .

История

Основание электростатики положили работы Кулона (хотя за десять лет до него такие же результаты, даже с ещё большей точностью, получил Кавендиш . Результаты работ Кавендиша хранились в семейном архиве и были опубликованы только спустя сто лет); найденный последним закон электрических взаимодействий дал возможность Грину, Гауссу и Пуассону создать изящную в математическом отношении теорию. Самую существенную часть электростатики составляет теория потенциала , созданная Грином и Гауссом. Очень много опытных исследований по электростатике было произведено Рисом книги которого составляли в прежнее время главное пособие при изучении этих явлений.

Диэлектрическая проницаемость

Нахождение величины диэлектрического коэффициента K какого-либо вещества, коэффициента, входящего почти во все формулы, с которыми приходится иметь дело в электростатике, может быть произведено весьма различными способами. Наиболее употребительные способы суть нижеследующие.

1) Сравнение электроёмкостей двух конденсаторов , имеющих одинаковые размеры и форму, но у которых у одного изолирующим слоем является слой воздуха, у другого - слой испытуемого диэлектрика .

2) Сравнение притяжений между поверхностями конденсатора, когда этим поверхностям сообщается определённая разность потенциалов, но в одном случае между ними находится воздух (сила притяжения = F 0), в другом случае - испытуемый жидкий изолятор (сила притяжения = F). Диэлектрический коэффициент находится по формуле:

3) Наблюдения электрических волн (см. Электрические колебания), распространяющихся вдоль проволок. По теория Максвелла скорость распространения электрических волн вдоль проволок выражается формулой

в которой K обозначает диэлектрический коэффициент среды, окружающей собой проволоку, μ обозначает магнитную проницаемость этой среды. Можно положить для огромного большинства тел μ = 1, а потому получается

Обыкновенно сравнивают длины стоячих электрических волн, возникающих в частях одной и той же проволоки, находящихся в воздухе и в испытуемом диэлектрике (жидком). Определив эти длины λ 0 и λ, получают K = λ 0 2 / λ 2. По теории Максвелла следует, что при возбуждении электрического поля в каком-либо изолирующем веществе внутри этого вещества возникают особые деформации. Вдоль трубок индукции изолирующая среда является поляризованной. В ней возникают электрические смещения, которые можно уподобить перемещениям положительного электричества по направлению осей этих трубок, причём через каждое поперечное сечение трубки проходит количество электричества, равное

Теория Максвелла даёт возможность найти выражения тех внутренних сил (сил натяжения и давления), которые являются в диэлектриках при возбуждении в них электрического поля. Этот вопрос был впервые рассмотрен самим Максвеллом, а позже и более обстоятельно Гельмгольцем . Дальнейшее развитие теории этого вопроса и тесно соединённой с этим теории электрострикции (то есть теории, рассматривающей явления, зависящие от возникновения особых напряжений в диэлектриках при возбуждении в них электрического поля) принадлежит работам Лорберга, Кирхгофа , П. Дюгема , Н. Н. Шиллера и некоторых др.

Граничные условия

Закончим краткое изложение наиболее существенного из отдела электрострикции рассмотрением вопроса о преломлении трубок индукции. Представим себе в электрическом поле два диэлектрика, отделяющихся друг от друга какой-нибудь поверхностью S, с диэлектрическими коэффициентами К 1 и К 2 .

Пусть в точках Р 1 и Р 2 , расположенных бесконечно близко к поверхности S по ту и по другую её сторону, величины потенциалов выражаются через V 1 и V 2 , а величины сил, испытываемых помещенной в этих точках единицей положительного электричества чрез F 1 и F 2 . Тогда для точки Р, лежащей на самой поверхности S, должно быть V 1 = V 2 ,

если ds представляет бесконечно малое перемещение по линии пересечения касательной плоскости к поверхности S в точке Р с плоскостью, проходящей через нормаль к поверхности в этой точке и через направление электрической силы в ней. С другой стороны, должно быть

Обозначим через ε 2 угол, составляемый силой F2 с нормалью n2 (внутрь второго диэлектрика), и через ε 1 угол, составляемый силой F 1 с той же нормалью n 2 Тогда, пользуясь формулами (31) и (30), найдем

Итак, на поверхности, отделяющей друг от друга два диэлектрика, электрическая сила претерпевает изменение в своём направлении подобно световому лучу, входящему из одной среды в другую. Это следствие теории оправдывается на опыте.

См. также

  • Электростатический разряд

Литература

  • Ландау, Л. Д. , Лифшиц, Е. М. Теория поля. - Издание 7-е, исправленное. - М .: Наука , 1988. - 512 с. - («Теоретическая физика» , том II). - ISBN 5-02-014420-7
  • Матвеев А. Н. Электричество и магнетизм. М.: Высшая школа, 1983.
  • Тоннела М.-А. Основы электромагнетизма и теории относительности. Пер. с фр. М.: Иностранная литература, 1962. 488 с.
  • Боргман, «Основания учения об электрических и магнитных явлениях» (т. I);
  • Maxwell, «Treatise on Electricity and Magnetism» (т. I);
  • Poincaré, «Electricité et Optique»";
  • Wiedemann, «Die Lehre von der Elektricität» (т. I);

Ссылки

  • Константин Богданов. Что может электростатика // Квант . - М .: Бюро Квантум, 2010. - № 2.

... Все предсказания электростатики следуют из двух ее законов.
Но одно дело высказать эти вещи математически, и совсем другое -
применять их с легкостью и с нужной долей остроумия.

Ричард Фейнман

Электростатика изучает взаимодействие неподвижных зарядов. Ключевые эксперименты электростатики были проведены в XVII-XVIII веках. С открытием электромагнитных явлений и той революции в технологиях, которые они произвели, интерес к электростатике на некоторое время был утерян. Однако современные научные исследования показывают огромное значение электростатики для понимания многих процессов живой и неживой природы.

Электростатика и жизнь

В 1953 году американские ученые С. Миллер и Г. Юри показали, что одни из «кирпичиков жизни» - аминокислоты - могут быть получены путем пропускания электрического разряда через газ, близкий по составу первобытной атмосфере Земли, состоящей из метана, аммиака, водорода и паров воды. В течение последующих 50 лет другие исследователи повторили эти опыты и получили те же результаты. При пропускании коротких импульсов тока через бактерии в их оболочке (мембране) появляются поры, через которые внутрь могут проходить фрагменты ДНК других бактерий, запуская один из механизмов эволюции. Таким образом, энергия, необходимая для зарождения жизни на Земле и ее эволюции, действительно могла быть электростатической энергией разрядов молний (рис. 1).

Как электростатика вызывает молнии

В каждый момент времени в разных точках Земли сверкает около 2000 молний, в каждую секунду примерно 50 молний ударяют в Землю, каждый квадратный километр поверхности Земли поражается молнией в среднем шесть раз в году. Еще в XVIII веке Бенджамин Франклин доказал, что молнии, бьющие из грозовых облаков, это электрические разряды, переносящие на Землю отрицательный заряд. При этом каждый из разрядов снабжает Землю несколькими десятками кулонов электричества, а амплитуда тока при ударе молнии составляет от 20 до 100 килоампер. Скоростная фотосъемка показала, что разряд молнии длится лишь десятые доли секунды и что каждая молния состоит из нескольких более коротких.

С помощью измерительных приборов, установленных на атмосферных зондах, в начале XX века было измерено электрическое поле Земли, напряженность которого у поверхности оказалась равной приблизительно 100 В/м, что соответствует суммарному заряду планеты около 400 000 Кл. Переносчиком зарядов в атмосфере Земли служат ионы, концентрация которых увеличивается с высотой и достигает максимума на высоте 50 км, где под действием космического излучения образовался электропроводящий слой - ионосфера. Поэтому можно сказать, что электрическое поле Земли - это поле сферического конденсатора с приложенным напряжением около 400 кВ. Под действием этого напряжения из верхних слоев в нижние все время течет ток силой 2–4 кА, плотность которого составляет (1–2)·10 –12 А/м 2 , и выделяется энергия до 1,5 ГВт. И если бы не было молний, это электрическое поле исчезло бы! Получается, что в хорошую погоду электрический конденсатор Земли разряжается, а при грозе - заряжается.

Грозовое облако - это огромное количество пара, часть которого сконденсировалось в виде мельчайших капелек или льдинок. Верх грозового облака может находиться на высоте 6–7 км, а низ - нависать над землей на высоте 0,5–1 км. Выше 3–4 км облака состоят из льдинок разных размеров, так как температура там всегда ниже нуля. Эти льдинки находятся в постоянном движении, вызванном восходящими потоками теплого воздуха, поднимающегося снизу от нагретой поверхности земли. Мелкие льдинки легче, чем крупные, и они увлекаются восходящими потоками воздуха и по дороге все время сталкиваются с крупными. При каждом таком столкновении происходит электризация, при которой крупные льдинки заряжаются отрицательно, а мелкие - положительно. Со временем положительно заряженные мелкие льдинки собираются преимущественно в верхней части облака, а отрицательно заряженные крупные - внизу (рис. 2). Другими словами, верхушка облака заряжается положительно, а низ - отрицательно. При этом на земле непосредственно под грозовым облаком наводятся положительные заряды. Теперь все готово для разряда молнии, при котором происходит пробой воздуха и отрицательный заряд с нижней части грозовой тучи перетекает на Землю.

Характерно, что перед грозой напряженность электрического поля Земли может достигать 100 кВ/м, т. е. в 1000 раз превышать ее значение в хорошую погоду. В результате во столько же раз увеличивается положительный заряд каждого волоска на голове человека, стоящего под грозовой тучей, и они, отталкиваясь друг от друга, встают дыбом (рис. 3).

Фульгурит - след молнии на земле

При разряде молнии выделяется энергия порядка 10 9 –10 10 Дж. Большая часть этой энергии тратится на гром, нагрев воздуха, световую вспышку и излучение других электромагнитных волн, и только маленькая часть выделяется в том месте, где молния входит в землю. Но и этой «маленькой» части вполне достаточно, чтобы вызвать пожар, убить человека или разрушить здание. Молния может разогревать канал, по которому она движется, до 30 000°C, что гораздо выше температуры плавления песка (1600–2000°C). Поэтому молнии, попадая в песок, плавят его, а раскаленный воздух и водяные пары, расширяясь, формируют из расплавленного песка трубку, которая через некоторое время застывает. Так рождаются фульгуриты (громовые стрелы, чертовы пальцы) - полые цилиндры, сделанные из оплавленного песка (рис. 4). Самые длинные из раскопанных фульгуритов уходили под землю на глубину более пяти метров.

Как электростатика защищает от молний

К счастью, большинство разрядов молнии происходят между облаками и поэтому не угрожают здоровью людей. Однако считается, что каждый год молнии убивают более тысячи людей по всему миру. По крайней мере, в США, где ведется такая статистика, ежегодно от удара молнии страдают около тысячи человек и более ста из них погибают. Ученые давно пытались защитить людей от этой «кары божьей». Например, изобретатель первого электрического конденсатора (лейденской банки) Питер ван Мушенбрук в статье об электричестве, написанной для знаменитой французской «Энциклопедии», защищал традиционные способы предотвращения молнии - колокольный звон и стрельба из пушек, которые, как он считал, оказываются довольно эффективными.

В 1750 году Франклин изобрел громоотвод (молниеотвод). Пытаясь защитить здание Капитолия столицы штата Мэриленд от удара молнии, он прикрепил к зданию толстый железный стержень, возвышающийся над куполом на несколько метров и соединенный с землей. Ученый отказался патентовать свое изобретение, желая, чтобы оно как можно скорее начало служить людям. Механизм действия громоотвода легко объяснить, если вспомнить, что напряженность электрического поля вблизи поверхности заряженного проводника увеличивается с ростом кривизны этой поверхности. Поэтому под грозовым облаком вблизи острия громоотвода напряженность поля будет так высока, что вызовет ионизацию окружающего воздуха и коронный разряд в нем. В результате вероятность попадания молнии в громоотвод значительно возрастет. Так знание электростатики не только позволило объяснить происхождение молний, но и найти способ защититься от них.

Весть о громоотводе Франклина быстро разнеслась по Европе, и его выбрали во все академии, включая и Российскую. Однако в некоторых странах набожное население встретило это изобретение с возмущением. Сама мысль, что человек так легко и просто может укротить главное оружие божьего гнева, казалась кощунственной. Поэтому в разных местах люди из благочестивых соображений ломали громоотводы.

Любопытный случай произошел в 1780 году в одном небольшом городке на севере Франции, где горожане потребовали снести железную мачту громоотвода и дело дошло до судебного разбирательства. Молодой адвокат, защищавший громоотвод от нападок мракобесов, построил защиту на том, что и разум человека, и его способность покорять силы природы имеют божественное происхождение. Все, что помогает спасти жизнь, во благо - доказывал молодой адвокат. Он выиграл процесс и снискал большую известность. Адвоката звали... Максимилиан Робеспьер.

Ну, а сейчас портрет изобретателя громоотвода - самая желанная репродукция в мире, ведь она украшает известную всем стодолларовую купюру.

Электростатика, возвращающая жизнь

Энергия разряда конденсатора не только привела к возникновению жизни на Земле, но и может вернуть жизнь людям, у которых клетки сердца перестали синхронно сокращаться. Асинхронное (хаотичное) сокращение клеток сердца называют фибрилляцией. Фибрилляцию сердца можно прекратить, если пропустить через все его клетки короткий импульс тока. Для этого к грудной клетке пациента прикладывают два электрода, через которые пропускают импульс длительностью около десяти миллисекунд и амплитудой до нескольких десятков ампер. При этом энергия разряда через грудную клетку может достигать 400 Дж (что равно потенциальной энергия пудовой гири, поднятой на высоту 2,5 м). Устройство, обеспечивающее электрический разряд, прекращающий фибрилляцию сердца, называют дефибриллятором. Простейший дефибриллятор представляет собой колебательный контур, состоящий из конденсатора емкостью 20 мкФ и катушки индуктивностью 0,4 Гн. Зарядив конденсатор до напряжения 1–6 кВ и разрядив его через катушку и пациента, сопротивление которого составляет около 50 Ом, можно получить импульс тока, необходимый для возвращения пациента к жизни.

Электростатика, дающая свет

Люминесцентная лампа может служить удобным индикатором напряженности электрического поля. Чтобы убедиться в этом, находясь в темном помещении, потрем лампу полотенцем или шарфом - в результате внешняя поверхность лампового стекла зарядится положительно, а ткань - отрицательно. Как только это произойдет, мы увидим всполохи света, возникающие в тех местах лампы, к которым мы прикасаемся заряженной тканью. Измерения показали, что напряженность электрического поля внутри работающей люминесцентной лампы составляет около 10 В/м. При такой напряженности свободные электроны обладают необходимой энергией для ионизации атомов ртути внутри люминесцентной лампы.

Электрическое поле под высоковольтными линиями электропередач - ЛЭП - может достигать очень высоких значений. Поэтому если в темное время суток люминесцентную лампу воткнуть в землю под ЛЭП, то она загорится, и довольно ярко (рис. 5). Так с помощью энергии электростатического поля можно освещать пространство под ЛЭП.

Как электростатика предупреждает о пожаре и делает дым чище

В большинстве случаев при выборе типа детектора пожарной сигнализации предпочтение отдается дымовому датчику, так как пожар обычно сопровождается выделением большого количества дыма и именно этот тип детектора способен предупредить людей в здании об опасности. Дымовые датчики используют ионизацию или фотоэлектрический принцип для обнаружения дыма в воздухе.

В ионизационных детекторах дыма имеется источник α-излучения (как правило, америций-241), ионизирующий воздух между металлическими пластинами-электродами, электрическое сопротивление между которыми постоянно измеряется с помощью специальной схемы. Образующиеся в результате α-излучения ионы обеспечивают проводимость между электродами, а оказывающиеся там микрочастицы дыма связываются с ионами, нейтрализуют их заряд и увеличивают таким образом сопротивление между электродами, на что реагирует электрическая схема, подавая сигнал тревоги. Датчики, устроенные на этом принципе, демонстрируют весьма впечатляющую чувствительность, реагируя еще до того, как самый первый признак дыма обнаруживается живым существом. Следует отметить, что используемый в датчике источник радиации никакой опасности для человека не представляет, так как альфа-лучи не могут пройти даже через лист бумаги и полностью поглощаются слоем воздуха толщиной в несколько сантиметров.

Способность частичек пыли к электризации широко используется в промышленных электростатических пылеуловителях. Газ, содержащий, например, частицы сажи, поднимаясь вверх, проходит через отрицательно заряженную металлическую сетку, в результате чего эти частицы приобретают отрицательный заряд. Продолжая подниматься вверх, частицы оказываются в электрическом поле положительно заряженных пластин, к которым они притягиваются, после чего частицы падают в специальные емкости, откуда их периодически удаляют.

Биоэлектростатика

Одной из причин астмы являются продукты жизнедеятельности пылевых клещей (рис. 6) - насекомых размером около 0,5 мм, живущих в нашем доме. Исследования показали, что приступы астмы вызываются одним из белков, который выделяют эти насекомые. Структура этого белка напоминает подкову, оба конца которой заряжены положительно. Электростатические силы отталкивания между концами такого подковообразного белка делают его структуру стабильной. Однако свойства белка можно изменить, если нейтрализовать его положительные заряды. Это удается сделать, увеличив концентрацию отрицательных ионов в воздухе с помощью любого ионизатора, например люстры Чижевского (рис. 7). Одновременно с этим уменьшается и частота приступов астмы.

Электростатика помогает не только обезвреживать белки, выделяемые насекомыми, но и ловить их самих. Уже говорилось о том, что волосы «встают дыбом», если их зарядить. Можно себе представить, что испытывают насекомые, когда оказываются электрически заряженными. Тончайшие волоски на их лапках расходятся в разные стороны, и насекомые теряют способность передвигаться. На таком принципе основана ловушка для тараканов, показанная на рисунке 8. Тараканов привлекает сладкая пудра, предварительно электростатически заряженная. Пудрой (на рисунке она белая) покрывают наклонную поверхность, находящуюся вокруг ловушки. Оказавшись на пудре, насекомые становятся заряженными и скатываются в ловушку.

Что такое антистатики?

Одежда, ковры, покрывала и т. п. предметы заряжаются после контакта с другими предметами, а иногда и просто со струями воздуха. В быту и на производстве заряды, возникающие таким образом, часто называют статическим электричеством.

При нормальных атмосферных условиях натуральные волокна (из хлопка, шерсти, шелка и вискозы) хорошо впитывают влагу (гидрофильны) и поэтому слегка проводят электричество. Когда такие волокна касаются других материалов или трутся о них, на их поверхностях появляются избыточные электрические заряды, но на очень короткое время, поскольку заряды сразу же стекают обратно по влажным волокнам ткани, содержащим различные ионы.

В отличие от натуральных, синтетические волокна (полиэфирные, акриловые, полипропиленовые) плохо впитывают влагу (гидрофобны), и на их поверхностях имеется меньшее количество подвижных ионов. При контакте синтетических материалов друг с другом они заряжаются противоположным зарядами, но так как эти заряды стекают очень медленно, материалы прилипают друг к другу, создавая неудобства и неприятные ощущения. Кстати, волосы по структуре очень близки к синтетическим волокнам и тоже гидрофобны, поэтому при контакте, например, с расческой они заряжаются электричеством и начинают отталкиваться друг от друга.

Чтобы избавиться от статического электричества, поверхность одежды или другого предмета можно смазать веществом, которое удерживает влагу и этим увеличивает концентрацию подвижных ионов на поверхности. После такой обработки возникший электрический заряд быстро исчезнет с поверхности предмета или распределится по ней. Гидрофильность поверхности можно увеличить, смазав ее поверхностно-активными веществами, молекулы которых похожи на мыльные молекулы - одна часть очень длинной молекулы заряжена, а другая нет. Вещества, препятствующие появлению статического электричества, называют антистатиками. Антистатиком является, например, и обычная угольная пыль или сажа, поэтому, чтобы избавиться от статического электричества, в состав пропитки ковролиновых покрытий и обивочных материалов включают так называемую ламповую сажу. Для этих же целей в такие материалы добавляют до 3% натуральных волокон, а иногда и тонкие металлические нити.

Электрический заряд – это физическая величина, характеризующая способность частиц или тел вступать в электромагнитные взаимодействия. Электрический заряд обычно обозначается буквами q или Q . В системе СИ электрический заряд измеряется в Кулонах (Кл). Свободный заряд в 1 Кл – это гигантская величина заряда, практически не встречающаяся в природе. Как правило, Вам придется иметь дело с микрокулонами (1 мкКл = 10 –6 Кл), нанокулонами (1 нКл = 10 –9 Кл) и пикокулонами (1 пКл = 10 –12 Кл). Электрический заряд обладает следующими свойствами:

1. Электрический заряд является видом материи.

2. Электрический заряд не зависит от движения частицы и от ее скорости.

3. Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

4. Существует два рода электрических зарядов, условно названных положительными и отрицательными .

5. Все заряды взаимодействуют друг с другом. При этом одноименные заряды отталкиваются, разноименные – притягиваются. Силы взаимодействия зарядов являются центральными, то есть лежат на прямой, соединяющей центры зарядов.

6. Существует минимально возможный (по модулю) электрический заряд, называемый элементарным зарядом . Его значение:

e = 1,602177·10 –19 Кл ≈ 1,6·10 –19 Кл.

Электрический заряд любого тела всегда кратен элементарному заряду:

где: N – целое число. Обратите внимание, невозможно существование заряда, равного 0,5е ; 1,7е ; 22,7е и так далее. Физические величины, которые могут принимать только дискретный (не непрерывный) ряд значений, называются квантованными . Элементарный заряд e является квантом (наименьшей порцией) электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака. Из закона сохранения заряда так же следует, если два тела одного размера и формы, обладающие зарядами q 1 и q 2 (совершенно не важно какого знака заряды), привести в соприкосновение, а затем обратно развести, то заряд каждого из тел станет равным:

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны , отрицательно заряженные электроны и нейтральные частицы – нейтроны . Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному (то есть минимально возможному) заряду e .

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов, или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион. Обратите внимание, что положительные протоны входят в состав ядра атома, поэтому их число может изменяться только при ядерных реакциях. Очевидно, что при электризации тел ядерных реакций не происходит. Поэтому в любых электрических явлениях число протонов не меняется, изменяется только число электронов. Так, сообщение телу отрицательного заряда означает передачу ему лишних электронов. А сообщение положительного заряда, вопреки частой ошибке, означает не добавление протонов, а отнимание электронов. Заряд может передаваться от одного тела к другому только порциями, содержащими целое число электронов.

Иногда в задачах электрический заряд распределен по некоторому телу. Для описания этого распределения вводятся следующие величины:

1. Линейная плотность заряда. Используется для описания распределения заряда по нити:

где: L – длина нити. Измеряется в Кл/м.

2. Поверхностная плотность заряда. Используется для описания распределения заряда по поверхности тела:

где: S – площадь поверхности тела. Измеряется в Кл/м 2 .

3. Объемная плотность заряда. Используется для описания распределения заряда по объему тела:

где: V – объем тела. Измеряется в Кл/м 3 .

Обратите внимание на то, что масса электрона равна:

m e = 9,11∙10 –31 кг.

Закон Кулона

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь. На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных точечных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

где: ε – диэлектрическая проницаемость среды – безразмерная физическая величина, показывающая, во сколько раз сила электростатического взаимодействия в данной среде будет меньше, чем в вакууме (то есть во сколько раз среда ослабляет взаимодействие). Здесь k – коэффициент в законе Кулона, величина, определяющая численное значение силы взаимодействия зарядов. В системе СИ его значение принимается равным:

k = 9∙10 9 м/Ф.

Силы взаимодействия точечных неподвижных зарядов подчиняются третьему закону Ньютона, и являются силами отталкивания друг от друга при одинаковых знаках зарядов и силами притяжения друг к другу при разных знаках. Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой .

Закон Кулона справедлив для точечных заряженных тел, равномерно заряженных сфер и шаров. В этом случае за расстояния r берут расстояние между центрами сфер или шаров. На практике закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними. Коэффициент k в системе СИ иногда записывают в виде:

где: ε 0 = 8,85∙10 –12 Ф/м – электрическая постоянная.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции: если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Запомните также два важных определения:

Проводники – вещества, содержащие свободные носители электрического заряда. Внутри проводника возможно свободное движение электронов – носителей заряда (по проводникам может протекать электрический ток). К проводникам относятся металлы, растворы и расплавы электролитов, ионизированные газы, плазма.

Диэлектрики (изоляторы) – вещества, в которых нет свободных носителей заряда. Свободное движение электронов внутри диэлектриков невозможно (по ним не может протекать электрический ток). Именно диэлектрики обладают некоторой не равной единице диэлектрической проницаемостью ε .

Для диэлектрической проницаемости вещества верно следующее (о том, что такое электрическое поле чуть ниже):

Электрическое поле и его напряженность

По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле . Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля – действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Электрическое поле, окружающее заряженное тело, можно исследовать с помощью так называемого пробного заряда – небольшого по величине точечного заряда, который не вносит заметного перераспределения исследуемых зарядов. Для количественного определения электрического поля вводится силовая характеристика - напряженность электрического поля E .

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на пробный заряд, помещенный в данную точку поля, к величине этого заряда:

Напряженность электрического поля – векторная физическая величина. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд. Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим.

Для наглядного представления электрического поля используют силовые линии . Эти линии проводятся так, чтобы направление вектора напряженности в каждой точке совпадало с направлением касательной к силовой линии. Силовые линии обладают следующими свойствами.

  • Силовые линии электростатического поля никогда не пересекаются.
  • Силовые линии электростатического поля всегда направлены от положительных зарядов к отрицательным.
  • При изображении электрического поля с помощью силовых линий их густота должна быть пропорциональна модулю вектора напряженности поля.
  • Силовые линии начинаются на положительном заряде или бесконечности, а заканчиваются на отрицательном или бесконечности. Густота линий тем больше, чем больше напряжённость.
  • В данной точке пространства может проходить только одна силовая линия, т.к. напряжённость электрического поля в данной точке пространства задаётся однозначно.

Электрическое поле называют однородным, если вектор напряжённости одинаков во всех точках поля. Например, однородное поле создаёт плоский конденсатор – две пластины, заряженные равным по величине и противоположным по знаку зарядом, разделённые слоем диэлектрика, причём расстояние между пластинами много меньше размеров пластин.

Во всех точках однородного поля на заряд q , внесённый в однородное поле с напряжённостью E , действует одинаковая по величине и направлению сила, равная F = Eq . Причём, если заряд q положительный, то направление силы совпадает с направлением вектора напряжённости, а если заряд отрицательный, то вектора силы и напряжённости противоположно направлены.

Положительных и отрицательных точечных зарядов изображены на рисунке:

Принцип суперпозиции

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряжённостей электрических полей, создаваемых в той же точке зарядами в отдельности:

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции . В соответствии с законом Кулона, напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю:

Это поле называется кулоновским. В кулоновском поле направление вектора напряженности зависит от знака заряда Q : если Q > 0, то вектор напряженности направлен от заряда, если Q < 0, то вектор напряженности направлен к заряду. Величина напряжённости зависит от величины заряда, среды, в которой находится заряд, и уменьшается с увеличением расстояния.

Напряженность электрического поля, которую создает заряженная плоскость вблизи своей поверхности:

Итак, если в задаче требуется определить напряженность поля системы зарядов, то надо действовать по следующему алгоритму :

  1. Нарисовать рисунок.
  2. Изобразить напряженность поля каждого заряда по отдельности в нужной точке. Помните, что напряженность направлена к отрицательному заряду и от положительного заряда.
  3. Вычислить каждую из напряжённостей по соответствующей формуле.
  4. Сложить вектора напряжённостей геометрически (т.е. векторно).

Потенциальная энергия взаимодействия зарядов

Электрические заряды взаимодействуют друг с другом и с электрическим полем. Любое взаимодействие описывает потенциальной энергией. Потенциальная энергия взаимодействия двух точечных электрических зарядов рассчитывается по формуле:

Обратите внимание на отсутствие модулей у зарядов. Для разноименных зарядов энергия взаимодействия имеет отрицательное значение. Такая же формула справедлива и для энергии взаимодействия равномерно заряженных сфер и шаров. Как обычно, в этом случае расстояние r измеряется между центрами шаров или сфер. Если же зарядов не два, а больше, то энергию их взаимодействия следует считать так: разбить систему зарядов на все возможные пары, рассчитать энергию взаимодействия каждой пары и просуммировать все энергии для всех пар.

Задачи по данной теме решаются, как и задачи на закон сохранения механической энергии: сначала находится начальная энергия взаимодействия, потом конечная. Если в задаче просят найти работу по перемещению зарядов, то она будет равна разнице между начальной и конечной суммарной энергией взаимодействия зарядов. Энергия взаимодействия так же может переходить в кинетическую энергию или в другие виды энергии. Если тела находятся на очень большом расстоянии, то энергия их взаимодействия полагается равной 0.

Обратите внимание: если в задаче требуется найти минимальное или максимальное расстояние между телами (частицами) при движении, то это условие выполнится в тот момент времени, когда частицы движутся в одну сторону с одинаковой скоростью. Поэтому решение надо начинать с записи закона сохранения импульса, из которого и находится эта одинаковая скорость. А далее следует писать закон сохранения энергии с учетом кинетической энергии частиц во втором случае.

Потенциал. Разность потенциалов. Напряжение

Электростатическое поле обладает важным свойством: работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

Следствием независимости работы от формы траектории является следующее утверждение: работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Свойство потенциальности (независимости работы от формы траектории) электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. А физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

Потенциал φ является энергетической характеристикой электростатического поля. В Международной системе единиц (СИ) единицей потенциала (а значит и разности потенциалов, т.е. напряжения) является вольт [В]. Потенциал - скалярная величина.

Во многих задачах электростатики при вычислении потенциалов за опорную точку, где значения потенциальной энергии и потенциала обращаются в ноль, удобно принять бесконечно удаленную точку. В этом случае понятие потенциала может быть определено следующим образом: потенциал поля в данной точке пространства равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Вспомнив формулу для потенциальной энергии взаимодействия двух точечных зарядов и разделив ее на величину одного из зарядов в соответствии с определением потенциала получим, что потенциал φ поля точечного заряда Q на расстоянии r от него относительно бесконечно удаленной точки вычисляется следующим образом:

Потенциал рассчитанный по этой формуле может быть положительным и отрицательным в зависимости от знака заряда создавшего его. Эта же формула выражает потенциал поля однородно заряженного шара (или сферы) при r R (снаружи от шара или сферы), где R – радиус шара, а расстояние r отсчитывается от центра шара.

Для наглядного представления электрического поля наряду с силовыми линиями используют эквипотенциальные поверхности . Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью или поверхностью равного потенциала. Силовые линии электрического поля всегда перпендикулярны эквипотенциальным поверхностям. Эквипотенциальные поверхности кулоновского поля точечного заряда – концентрические сферы.

Электрическое напряжение это просто разность потенциалов, т.е. определение электрического напряжения может быть задано формулой:

В однородном электрическом поле существует связь между напряженностью поля и напряжением:

Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:

Работа электрического поля в общем случае может быть вычислена также и по одной из формул:

В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:

В этих формулах:

  • φ – потенциал электрического поля.
  • φ – разность потенциалов.
  • W – потенциальная энергия заряда во внешнем электрическом поле.
  • A – работа электрического поля по перемещению заряда (зарядов).
  • q – заряд, который перемещают во внешнем электрическом поле.
  • U – напряжение.
  • E – напряженность электрического поля.
  • d или ∆l – расстояние на которое перемещают заряд вдоль силовых линий.

Во всех предыдущих формулах речь шла именно о работе электростатического поля, но если в задаче говорится, что «работу надо совершить», или идет речь о «работе внешних сил», то эту работу следует считать так же, как и работу поля, но с противоположным знаком.

Принцип суперпозиции потенциала

Из принципа суперпозиции напряженностей полей, создаваемых электрическими зарядами, следует принцип суперпозиции для потенциалов (при этом знак потенциала поля зависит от знака заряда, создавшего поле):

Обратите внимание, насколько легче применять принцип суперпозиции потенциала, чем напряженности. Потенциал – скалярная величина, не имеющая направления. Складывать потенциалы – это просто суммировать численные значения.

Электрическая емкость. Плоский конденсатор

При сообщении проводнику заряда всегда существует некоторый предел, более которого зарядить тело не удастся. Для характеристики способности тела накапливать электрический заряд вводят понятие электрической емкости . Емкостью уединенного проводника называют отношение его заряда к потенциалу:

В системе СИ емкость измеряется в Фарадах [Ф]. 1 Фарад – чрезвычайно большая емкость. Для сравнения, емкость всего земного шара значительно меньше одного фарада. Емкость проводника не зависит ни от его заряда, ни от потенциала тела. Аналогично, плотность не зависит ни от массы, ни от объема тела. Емкость зависит лишь от формы тела, его размеров и свойств окружающей его среды.

Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

Величина электроемкости проводников зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами , а проводники, составляющие конденсатор, называются обкладками .

Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским . Электрическое поле плоского конденсатора в основном локализовано между пластинами.

Каждая из заряженных пластин плоского конденсатора создает вблизи своей поверхности электрическое поле, модуль напряженности которого выражается соотношением уже приводившимся выше. Тогда модуль напряженности итогового поля внутри конденсатора, создаваемого двумя пластинами, равен:

За пределами конденсатора, электрические поля двух пластин направлены в разные стороны, и поэтому результирующее электростатическое поле E = 0. может быть рассчитана по формуле:

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз. Обратите внимание, что S в этой формуле есть площадь только одной обкладки конденсатора. Когда в задаче говорят о «площади обкладок», то имеют в виду именно эту величину. На 2 умножать или делить её не надо никогда.

Еще раз приведем формулу для заряда конденсатора . Под зарядом конденсатора понимают только заряд его положительной обкладки:

Сила притяжения пластин конденсатора. Сила, действующая на каждую обкладку, определяется не полным полем конденсатора, а полем, созданным противоположной обкладкой (сама на себя обкладка не действует). Напряженность этого поля равна половине напряженности полного поля, и сила взаимодействия пластин:

Энергия конденсатора. Ее же называют энергией электрического поля внутри конденсатора. Опыт показывает, что заряженный конденсатор содержит запас энергии. Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор. Существует три эквивалентные формы записи формулы для энергии конденсатора (они следуют одна из другой если воспользоваться соотношением q = CU ):

Особое внимание обращайте на фразу: «Конденсатор подключён к источнику». Это означает, что напряжение на конденсаторе не изменяется. А фраза «Конденсатор зарядили и отключили от источника» означает, что заряд конденсатора не изменится.

Энергия электрического поля

Электрическую энергию следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе. По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля. Энергия заряженных тел сосредоточена в пространстве, в котором есть электрическое поле, т.е. можно говорить об энергии электрического поля. Например, у конденсатора энергия сосредоточена в пространстве между его обкладками. Таким образом, имеет смысл ввести новую физическую характеристику – объёмную плотность энергии электрического поля. На примере плоского конденсатора, можно получить такую формулу для объёмной плотности энергии (или энергии единицы объёма электрического поля):

Соединения конденсаторов

Параллельное соединение конденсаторов – для увеличения ёмкости. Конденсаторы соединены одноименно заряженными обкладками, как бы увеличивая площадь одинаково заряженных пластин. Напряжение на всех конденсаторах одинаковое, общий заряд равен сумме зарядов каждого из конденсаторов, и общая ёмкость также равна сумме емкостей всех конденсаторов соединенных параллельно. Выпишем формулы для параллельного соединения конденсаторов:

При последовательном соединении конденсаторов общая ёмкость батареи конденсаторов всегда меньше, чем ёмкость наименьшего конденсатора, входящего в батарею. Применяется последовательное соединение для увеличения напряжения пробоя конденсаторов. Выпишем формулы для последовательного соединения конденсаторов. Общая емкость последовательно соединенных конденсаторов находится из соотношения:

Из закона сохранения заряда следует, что заряды на соседних обкладках равны:

Напряжение равно сумме напряжений на отдельных конденсаторах.

Для двух последовательно соединённых конденсаторов формула выше даст нам следующее выражение для общей емкости:

Для N одинаковых последовательно соединённых конденсаторов:

Проводящая сфера

Напряженность поля внутри заряженного проводника равна нулю. В противном случае на свободные заряды внутри проводника действовала бы электрическая сила, которая вынуждала бы эти заряды двигаться внутри проводника. Это движение, в свою очередь, приводило бы к разогреванию заряженного проводника, чего на самом деле не происходит.

Факт того, что внутри проводника нет электрического поля можно понять и по-другому: если бы оно было то заряженные частицы опять таки двигались бы, причем они бы двигались именно так, чтобы свести это поле к нолю своим собственным полем, т.к. вообще-то двигаться им не хотелось бы, ведь всякая система стремится к равновесию. Рано или поздно все двигавшиеся заряды остановились бы именно в том месте, чтобы поле внутри проводника стало равно нолю.

На поверхности проводника напряжённость электрического поля максимальна. Величина напряжённости электрического поля заряженного шара за его пределами убывает по мере удаления от проводника и рассчитывается по формуле, аналогичной формулам для напряженности поля точечного заряда, в которой расстояния отсчитываются от центра шара.

Так как напряженность поля внутри заряженного проводника равна нулю, то потенциал во всех точках внутри и на поверхности проводника одинаков (только в этом случае разность потенциалов, а значит и напряжённость равна нулю). Потенциал внутри заряженного шара равен потенциалу на поверхности. Потенциал за пределами шара вычисляется по формуле, аналогичной формулам для потенциала точечного заряда, в которой расстояния отсчитываются от центра шара.

Радиуса R :

Если шар окружен диэлектриком, то:

Свойства проводника в электрическом поле

  1. Внутри проводника напряженность поля всегда равна нулю.
  2. Потенциал внутри проводника во всех точках одинаков и равен потенциалу поверхности проводника. Когда в задаче говорят, что «проводник заряжен до потенциала … В», то имеют в виду именно потенциал поверхности.
  3. Снаружи от проводника вблизи от его поверхности напряженность поля всегда перпендикулярна поверхности.
  4. Если проводнику сообщить заряд, то он весь распределится по очень тонкому слою вблизи поверхности проводника (обычно говорят, что весь заряд проводника распределяется на его поверхности). Это легко объясняется: дело в том, что сообщая заряд телу, мы передаем ему носители заряда одного знака, т.е. одноименные заряды, которые отталкиваются. А значит они будут стремиться разбежаться друг от друга на максимальное расстояние из всех возможных, т.е. скопятся у самых краев проводника. Как следствие, если из проводника удалить сердцевину, то его электростатические свойства никак не изменятся.
  5. Снаружи проводника напряженность поля тем больше, чем кривее поверхность проводника. Максимальное значение напряженности достигается вблизи остриев и резких изломов поверхности проводника.

Замечания к решению сложных задач

1. Заземление чего-либо означает соединение проводником данного объекта с Землей. При этом потенциалы Земли и имеющегося объекта выравниваются, а необходимые для этого заряды перебегают по проводнику с Земли на объект либо наоборот. При этом нужно учитывать несколько факторов, которые следуют из того, что Земля несоизмеримо больше любого объекта находящегося не ней:

  • Общий заряд Земли условно равен нолю, поэтому ее потенциал также равен нолю, и он останется равным нолю после соединения объекта с Землей. Одним словом, заземлить – означает обнулить потенциал объекта.
  • Для обнуления потенциала (а значит и собственного заряда объекта, который мог быть до этого как положительным так и отрицательным), объекту придется либо принять либо отдать Земле некоторый (возможно даже очень большой) заряд, и Земля всегда сможет обеспечить такую возможность.

2. Еще раз повторимся: расстояние между отталкивающимися телами минимально в тот момент, когда их скорости становятся равны по величине и направлены в одну сторону (относительная скорость зарядов равна нулю). В этот момент потенциальная энергия взаимодействия зарядов максимальна. Расстояние между притягивающимися телами максимально, также в момент равенства скоростей, направленных в одну сторону.

3. Если в задаче имеется система, состоящая из большого количества зарядов, то необходимо рассматривать и расписывать силы, действующие на заряд, который не находится в центре симметрии.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Определение 1

    Электростатика – обширный раздел электродинамики, исследующий и описывающий покоящиеся в определенной системе электрически заряженные тела.

    На практике выделяют два вида электростатических зарядов: положительные (стекло о шелк) и отрицательные (эбонит о шерсть). Элементарный заряд является минимальным зарядом ($e = 1,6 ∙10^{ -19}$ Кл). Заряд любого физического тела кратен целому количеству элементарных зарядов: $q = Ne$.

    Электризация материальных тел – перераспределение заряда между телами. Способы электризации: касание, трение и влияние.

    Закон сохранения электрического положительного заряда – в замкнутой концепции алгебраическая сумма зарядов всех элементарных частиц остается стабильной и неизменной. $q_1 + q _2 + q _3 + …..+ q_n = const$. Пробный заряд в данном случае представляет собой точечный положительный заряд.

    Закон Кулона

    Указанный закон был установлен экспериментальным путем в 1785 году. Согласно этой теории, сила взаимодействия двух покоящихся точечных зарядов в среде всегда прямо пропорциональна произведению положительных модулей и обратно пропорционально квадрату общего расстояния между ними.

    Электрическое поле представляет собой уникальный вид материи, который осуществляет взаимодействие между стабильными электрическими зарядами, формируется вокруг зарядов, воздействует только на заряды.

    Такой процесс точечных неподвижных элементов полностью подчиняются третьему закону Ньютона, и считается результатом отталкивания друг от друга частиц при одинаковых силовых притяжениях друг к другу. Взаимосвязь стабильных электрических зарядов в электростатике называют кулоновским взаимодействием.

    Закон Кулона вполне справедлив и точен для заряженных материальных тел, равномерно заряженных шаров и сфер. В этом случае за расстояния в основном берут параметры центров пространств. На практике данный закон хорошо и быстро выполняется, если величины заряженных тел гораздо меньше расстояния между ними.

    Замечание 1

    В электрическом поле также действуют проводники и диэлектрики.

    Первые представляют содержащие свободные носители электромагнитного заряда вещества. Внутри проводника может возникнуть свободное движение электронов. К этим элементам относятся растворы, металлы и различные расплавы электролитов, идеальные газы и плазма.

    Диэлектрики являются веществами, в которых не может быть свободных носителей электрического заряда. Свободное движение электронов внутри самих диэлектриков невозможно, так как по ним не протекает электрический ток. Именно эти физические частицы обладают не равной диэлектрической единице проницаемостью.

    Силовые линии и электростатика

    Силовые линии начальной напряженности электрического поля являются непрерывными линиями, касательные точки к которым в каждой среде, через которые они проходят, полностью совпадают с осью напряженности.

    Основные характеристики силовых линий:

    • не пересекаются;
    • не замкнуты;
    • стабильны;
    • конечное направление совпадает с направлением вектора;
    • начало на $+ q$ или в бесконечности, конец на $– q$;
    • формируются вблизи зарядов (где больше напряжённость);
    • перпендикулярны поверхности основного проводника.

    Определение 2

    Разность электрических потенциалов или напряжение (Ф или $U$) - это величина потенциалов в начальной и конечной точках траектории положительного заряда. Чем меньше изменяется потенциал на отрезке пути, тем меньше в итоге напряженность поля.

    Напряженность электрического поля всегда направлена в сторону уменьшения начального потенциала.

    Рисунок 2. Потенциальная энергия системы электрических зарядов. Автор24 - интернет-биржа студенческих работ

    Электроемкость характеризует способность любого проводника накапливать необходимый электрический заряд на собственной поверхности.

    Данный параметр не зависит от электрического заряда, однако на него могут воздействовать геометрические размеры проводников, их формы, расположение и свойств среды между элементами.

    Конденсатор является универсальным электротехническим устройством, которое помогает быстро накопить электрический заряд для отдачи его в цепь.

    Электрическое поле и его напряженность

    По современным представлениям ученых, электрические стабильные заряды не влияют друг на друга непосредственно. Каждое заряженное физическое тело в электростатике создает в окружающей среде электрическое поле. Этот процесс оказывает силовое воздействие на другие заряженные вещества. Главное свойство электрического поля заключается в действии на точечные заряды с некоторой силой. Таким образом, взаимодействие положительно заряженных частиц осуществляется через поля, которые окружают заряженные элементы.

    Это явление возможно исследовать посредством, так называемого, пробного заряда – небольшого по размеру электрического заряда, который не вносит существенное перераспределения изучаемого зарядов. Для количественного выявления поля вводится силовая особенность - напряженность электрического поля.

    Напряженностью называют физический показатель, который равен отношению силы, с которой поле воздействует на пробный заряд, размещенный в данной точке поля, к величине самого заряда.

    Напряженность электрического поля представляет собой векторную физическую величину. Направление вектора в этом случае совпадает в каждой материальной точке окружающего пространства с направлением действующей на положительный заряд силы. Электрическое поле не меняющихся со временем и неподвижных элементов считается электростатическим.

    Для понимания электрического поля применяют силовые линии, которые проводятся таким образом, чтобы направление главной оси напряженности в каждой системе совпадало с направлением касательной к точке.

    Разность потенциалов в электростатике

    Электростатическое поле включает одно важное свойство: работа сил всех движущихся частиц при перемещении точечного заряда из одной точки поля в другую не зависит от направления траектории, а определяется исключительно положением начальной и конечной линий и параметром заряда.

    Результатом независимости работы от формы движения зарядов является следующее утверждение: функционал сил электростатического поля при преобразовании заряда по любой замкнутой траектории всегда равен нулю.

    Рисунок 4. Потенциальность электростатического поля. Автор24 - интернет-биржа студенческих работ

    Свойство потенциальности электростатического поля помогает ввести понятие потенциальной и внутренней энергии заряда. А физический параметр, равный соотношению потенциальной энергии в поле к величине этого заряда, называют постоянным потенциалом электрического поля.

    Во многих сложных задачах электростатики при определении потенциалов за опорную материальную точку, где величина потенциальной энергии и самого потенциала обращаются в ноль, удобно использовать бесконечно удаленную точку. В этом случае значимость потенциала определяется так: потенциал электрического поля в любой точке пространства равен работе, которую выполняют внутренние силы при удалении положительного единичного заряда из данной системы в бесконечность.

    где F - модуль силы взаимодействия двух точечных зарядов величиной q 1 и q 2 , r - расстояние между зарядами, - диэлек- трическая проницаемость среды, 0 - диэлектрическая постоянная.

      Напряженность электрического поля

    где - сила, действующая на точечный заряд q 0 , помещенный в данную точку поля.

      Напряженность поля точечного заряда (по модулю)

    где r - расстояние от заряда q до точки, в которой определяется напряженность.

      Напряженность поля, создаваемого системой точечных зарядов (принцип суперпозиции электрических полей)

    где - напряженность в данной точке поля, создаваемого i-тым зарядом.

      Модуль напряженностиполя, создаваемого бесконечной равномерно заряженной плоскостью:

    где
    - поверхностная плотность заряда.

      Модуль напряженности поля плоского конденсатора в средней его части

    .

    Формула справедлива, если расстояние между пластинами много меньше линейных размеров пластин конденсатора.

      Напряженность поля, создаваемого бесконечно длинной равномерно заряженной нитью (или цилиндром) на расстоянии r от нити или оси цилиндра по модулю:

    ,

    где
    - линейная плотность заряда.

    а) через произвольную поверхность, помещенную в неоднородное поле

    ,

    где - угол между вектором напряженности и нормалью к элементу поверхности, dS - площадь элемента поверхности, E n - проекция вектора напряженности на нормаль;

    б) через плоскую поверхность, помещенную в однородное электрическое поле:

    ,

    в)через замкнутую поверхность:

    ,

    где интегрирование ведется по всей поверхности.

      Теорема Гаусса. Поток вектора напряженности через любую замкнутую поверхность S равен алгебраической сумме зарядов q 1 , q 2 ... q n , охватываемых этой поверхностью, деленной на 0 .

    .

    Поток вектора электрического смещения выражается аналогично потоку вектора напряженности электрического поля:

    а) поток сквозь плоскую поверхность, если поле однородно

    б) в случае неоднородного поля и произвольной поверхности

    ,

    где D n - проекция вектора на направление нормали к элементу поверхности, площадь которой равна dS .

      Теорема Гаусса. Поток вектора электрической индукции сквозь замкнутую поверхность S , охватывающую заряды q 1 , q 2 ... q n , равен

    ,

    где n - число зарядов, заключенных внутри замкнутой поверхности (заряды со своим знаком).

      Потенциальная энергия системы двух точечных зарядов Q и q при условии, что W  = 0, находится по формуле:

    W =
    ,

    где r - расстояние между зарядами. Потенциальная энергия положительна при взаимодействии одноименных зарядов и отрицательна при взаимодействии разноименных.

      Потенциал электрического поля, созданного точечным зарядом Q на расстоянии r

     =
    ,

      Потенциал электрического поля, созданного металлической сферой радиуса R , несущей заряд Q :

     =
    (r ≤ R ; поле внутри и на поверхности сферы),

     =
    (r > R ; поле вне сферы).

      Потенциал электрического поля, созданного системой n точечных зарядов в соответствии с принципом суперпозиции электрических полей равен алгебраической сумме потенциалов 1 , 2 ,…, n , создаваемых зарядами q 1 , q 2 , ..., q n в данной точке поля

    = .

      Связь потенциалов с напряженностью:

    а) в общем случае = -qrad или =
    ;

    б) в случае однородного поля

    Е =
    ,

    где d - расстояние между эквипотенциальными поверхностями с потенциалами 1 и 2 вдоль силовой линии;

    в) в случае поля, обладающего центральной или осевой симметрией

    где производная берется вдоль силовой линии.

      Работа, совершаемая силами поля по перемещению заряда q из точки 1 в точку 2

    A = q ( 1 - 2 ),

    где ( 1 - 2 ) - разность потенциалов начальной и конечной точек поля.

      Разность потенциалов и напряженность электрического поля связаны соотношениями

    ( 1 - 2 ) =
    ,

    где Е е - проекция вектора напряженности на направление перемещения dl .

      Электроемкость уединенного проводника определяется отношением заряда q на проводнике к потенциалу проводника .

    .

      Электроемкость конденсатора:

    ,

    где ( 1 - 2 ) = U - разность потенциалов (напряжение) между обкладками конденсатора; q - модуль заряда на одной обкладке конденсатора.

      Электроемкость проводящего шара (сферы) в СИ

    с = 4 0 R ,

    где R - радиус шара, - относительная диэлектрическая проницаемость среды; 0 = 8,8510 -12 Ф/м.

      Электроемкость плоского конденсатора в системе СИ:

    ,

    где S - площадь одной пластины; d - расстояние между обкладками.

      Электроемкость сферического конденсатора (две концентри- ческие сферы радиусами R 1 и R 2 , пространство между которыми заполнено диэлектриком, с диэлектрической проницаемость ):

    .

      Электроемкость цилиндрического конденсатора (два коакси-альных цилиндра длиной l и радиусами R 1 и R 2 , пространство между которыми заполнено диэлектриком с диэлектрической проницаемостью )

    .

      Емкость батареи из n конденсаторов, соединенных после- довательно, определяется соотношением

    .

    Последние две формулы применимы для определения емкости многослойных конденсаторов. Расположение слоев параллельно пластинам соответствует последовательному соединению однослойных конденсаторов; если же границы слоев перпендикулярны пластинам, то, считают, что имеется параллельное соединение однослойных конденсаторов.

      Потенциальная энергия системы неподвижных точечных зарядов

    .

    Здесь i - потенциал поля, создаваемого в той точке, где находится заряд q i , всеми зарядами, кроме i -го; n - общее число зарядов.

      Объемная плотность энергии электрического поля (энергия, отнесенная к единице объема):

    =
    = = ,

    где D - величина вектора электрического смещения.

      Энергия однородного поля:

    W = V .

      Энергия неоднородного поля:

    W =
    .


    © 2024
    zko-pricep.ru - Полезные новости для автомобилистов